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INTRODUCTION

Magnetic resonance imaging (MRI) is more sensitive than plain radiographs in detecting arthritis that will 
benefit from early aggressive treatment.[1-3] Finger joints are of particular interest for arthritis examinations 
since they are commonly involved[4,5] and are often the first joints affected. However, MRI of finger joints is 
difficult due to their small size. Partial volume effects hinder the visualization of lesions[6] and the bone.[7] 
Accurate assessment of the bone is important as para-articular erosion portends irreversible joint damage.[8] 
Patients with bone damage at an early stage of arthritis need to be identified and monitored closely.[9] To 

ABSTRACT
Objective: High-resolution images of finger joints with chemical-shift elimination can be obtained using an interleaved water-
fat (IWF) sequence. This study assessed IWF imaging of finger joints in the delineation of bone structures by comparing 
images of cadaver fingers with those of microcomputed tomography (CT) that served as a standard reference.

Materials and Methods: IWF images with spatial resolution of 176 µ × 176 µ × 300 µ were obtained from the distal and 
proximal interphalangeal joints of two cadaver finger specimens using a custom-built radiofrequency receive coil at 1.5T. 
Regular three-dimensional gradient-echo (GRE) images were also acquired with similar parameters and compared with the 
IWF images to evaluate the effects of chemical shift. Micro-CT scans were obtained and served as the standard reference. 
The image data were reviewed by two experienced musculoskeletal radiologists in consensus. The delineation of normal joint 
structures and abnormalities in the finger specimens as revealed by the magnetic resonance imaging (MRI) and micro-CT 
images were compared. The IWF and regular GRE images were assigned scores 0–3 for the depiction of apparent marginal 
bone defects, with zero being the same in appearance to the micro-CT image and three as having minimal resemblance to it. 
Statistical analysis of the scoring results was conducted to compare the two MRI techniques.

Results: The high-resolution IWF images provided accurate delineation of bone and calcified structures as seen in micro-CT. 
The thickness of subchondral bone was depicted similarly on the IWF water + fat and the micro-CT images but not on the 
regular GRE images. The regular GRE sequence showed false marginal bone defects not observed with IWF and micro-CT. In 
addition, the IWF water-only images facilitated the identification of bone cyst by revealing its water content.

Conclusion: High-resolution IWF imaging should be useful for the early diagnosis and treatment assessment of arthritis and 
should also benefit basic research in the pathophysiology of the disease.
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provide the optimal signal and image resolution for MRI of finger 
joints, dedicated radiofrequency (RF) coils were developed.[10]

Another obstacle to finger MRI is chemical-shift artifacts that 
hinder the evaluation of bone and other structures[11,12] and at 
times resemble erosive changes.[7,13] Studies found mismatches 
in erosion detection between MRI and computed tomography 
(CT).[14,15] In addition, chemical-shift artifacts alter the appearance 
of subchondral bone[11,13,16] and may affect the early detection 
of osteoarthritis.[17] To eliminate chemical-shift artifacts, an 
interleaved water-fat (IWF) sequence had been developed[18] and 
applied to high-resolution finger imaging.[13] It acquires both 
water-only (fat-suppressed) and fat-only images and eliminates 
chemical-shift artifacts in the combined water + fat (nonfat-
suppressed) images. The objective of this study was to evaluate 
high-resolution IWF imaging of finger joints in the depiction 
of bone structures by acquiring images of cadaver fingers and 
compared with micro-CT.

MATERIALS AND METHODS

Two cadaver finger specimens obtained from the National Disease 
Research Interchange (NDRI, Philadelphia, PA, USA) were used. 
According to the information provided by NDRI, they were 
harvested from two donors – a normal finger from a 68-year-
old male and an arthritic finger from a 71-year-old male with 
unspecified arthritis. These fingers were among the second-to-
fourth digits of the hand. They were preserved in a freezer and 
were thawed at room temperature before the use. The Institutional 
Biosafety Committee of our institution approved this study.

MR imaging was conducted on a General Electric (Milwaukee, 
WI) 1.5T scanner with maximum gradient amplitude of 40 mT/m 
and maximum slew rate of 150 T/m/s. An RF receive coil specially 
developed for finger joints was used to obtain high-resolution 
images. The coil consisted of a copper tape loop 2.9 cm in diameter 
and 2.0 cm in width and had a similar design as the one described 
in Reference 10. For scanning, the coil was placed with its axis 
perpendicular to the main magnetic field. The finger specimen 
was inserted through the coil with the joint being imaged centered 
in the coil. The distal interphalangeal (DIP) and proximal 
interphalangeal (PIP) joints were imaged separately.

An IWF sequence was modified from the regular three-
dimensional gradient-echo (3D GRE) sequence through pulse 
sequence programming.[13,18] It excited and acquired water-only 

and fat-only signals in an interleaved manner during each 
repetition time (TR) period [Figure 1]. Sagittal and coronal images 
of the finger joints were acquired with TR 52 ms, echo time 12 ms, 
field of view (FOV) 4.5 cm, acquisition matrix 256 × 256, in-plane 
resolution 176 µm × 176 µm, slice thickness 300 µm, flip angle 20°, 
default receive bandwidth ± 15.63 kHz (122 Hz/pixel), and scan 
time 14.2 min. Frequency-encoding direction was along the axis 
of the finger specimen, and the polarity of the frequency-encoding 
gradient was selected such that the proximal side of the finger 
experienced a higher magnetic field. Regular 3D GRE images 
with and without fat suppression were also acquired using similar 
parameters for comparison. To enable the thin-slice acquisition, 
the RF pulse width of the regular GRE sequence was increased 
from 3.2 ms to 6.4 ms through pulse sequence programming. The 
IWF data were reconstructed into water + fat (nonfat-suppressed) 
and water-only (fat-suppressed) images using a custom MATLAB 
(MathWorks, Natick, MA, USA) program on a remote computer. 
The in-plane matrix size was increased to 1024 × 1024 using bicubic 
interpolation. The regular GRE images were also reconstructed on 
MATLAB with similar settings to allow fair comparison with the 
IWF images.

For the micro-CT study, a Viva CT40 system (Scanco Medical AG, 
Basserdorf, Switzerland) was used. Images were obtained in the 
transverse plane with FOV 19.2 mm × 18.3 mm at a resolution of 
30 µm × 30 µm ×30 µm per voxel using a voltage 55 kVp, current 
142 µA, and an integration time of 200 ms.

Osirix software (http://www. osirix-viewer. com/) was used to 
process the high-resolution MRI and the micro-CT data for 
evaluation. To facilitate comparison of the two modalities, the 
micro-CT image data were reformatted to match the MR images 
in slice position and orientation. Image evaluation was performed 
by two experienced musculoskeletal radiologists in consensus. 
Since the purpose of the study was to assess the depiction of bone 
structures, only the water + fat or nonfat-suppressed MR images 
were evaluated. Each set of the IWF water + fat and regular GRE 
nonfat-suppressed MRI data was compared to the corresponding 
micro-CT image on a computer monitor, with micro-CT on top 
and the two MR techniques at the bottom with randomized left-
right position. Five MRI slices in the coronal plane and another 
five in the sagittal plane from each finger joint were selected for the 
comparison. For each plane, the five selected slices comprised one 
slice in the center of the joint plus the fifth and tenth slices on either 
side of it. The distance between adjacent selected slices was 1.5 mm. 

Figure 1: Schematic diagram of the interleaved water-fat sequence used in this study. By acquiring water-only and fat-only signals in an interleaved 
fashion within each repetition time period, the interleaved water-fat sequence provides both water + fat (nonfat-suppressed) and water-only (fat-
suppressed) images in a single-scan time.
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Since the DIP of one of the fingers spanned only over three selected 
slices in the coronal plane, the total number of image sets in the 
comparison was 38. The MRI data were assigned scores between 
zero and three for the depiction of apparent marginal bone defects, 
with zero being the same in appearance to the micro-CT image and 
three as having minimal resemblance to it. The proximal and distal 
sides of each finger joint were scored separately. Statistical analysis 
of the scoring results was conducted to compare the two MRI 
techniques using the Statistical Analysis Software (SAS Institute, 
Cary, North Carolina, USA). Specifically, the proportional-odds 
cumulative logistic regression models were employed to model the 
ordinal outcome with the probability of having a lower score (better 
resemblance to the micro-CT). The proportional-odds assumption 
was also checked. For each side of the joint (distal or proximal), 
comparisons were made between (1) the two MRI techniques 
in general and (2) between the two MRI techniques at either the 
sagittal or coronal plane to evaluate the dependency of the imaging 
performance on slice orientation. The odds ratio (OR) of having 
the lower score, P value, and 95% confidence interval (CI) of OR 
were provided for each set of the comparison.

RESULTS

As mentioned in the Method section, four finger joints (2 DIP 
and 2 PIP) were evaluated in this study. The high-resolution MRI 
and micro-CT finger images were able to be matched closely to 
each other, allowing precise comparison of the two modalities 

[Figures 2-5]. The IWF technique revealed detailed bone structures 
and abnormalities similar to those observed in micro-CT.

The thickness of subchondral bone was depicted similarly on the 
IWF water + fat and the micro-CT images. On the regular GRE 
nonfat-suppressed images, subchondral bone appeared thicker 
on the proximal side of the joint in the regular GRE images 
[Figure 2]. This is a result of chemical-shift phenomenon shifting 
cartilage and nearby joint tissues with water signal away from the 
bone marrow with fat signal on that side of the joint.

For the comparison of apparent marginal bone defects [Tables 1 
and 2], the IWF sequence performed much better than the regular 
GRE sequence on the distal side of the joint (P = 0.0014; OR = 5.285, 
95% CI = [1.90, 14.691]), and this was also the case when each 
imaging plane (sagittal or coronal) was considered separately 
(P = 0.0012; OR = 6.017; 95% CI = [2.029, 17.847]). The regular 
GRE sequence showed false marginal bone defects not observed 
with IWF and micro-CT [Figure  3], which were attributed to 
chemical-shift artifacts that brought neighboring joint tissues with 
water signal closer to the bone marrow (fat signal) on that side of 
the joint creating pseudo disruptions in the subchondral bone. On 
the other hand, IWF and regular GRE performed equally well in 
the depiction of marginal bone defects on the proximal side of the 
joint, being in complete agreement with micro-CT. This result is 
expected as pseudo thickening of the subchondral bone on the 
proximal side of the joint due to chemical-shift artifacts should 
not lead to the appearance of false defects at bone margins.

Figure 2: The subchondral bone thickness of this proximal interphalangeal joint was depicted similarly on the coronal (a) interleaved water-fat water + 
fat and (b) microcomputed tomography images. However, it appeared to be much thicker on the proximal side of the joint (arrows) on the (c) regular 
nonfat-suppressed gradient-echo image.

cba

Figure 3: There were apparent disruptions of the marginal bone (arrows) seen on the sagittal (a) regular gradient-echo nonfat-suppressed image of this 
proximal interphalangeal joint but not on the corresponding (b) interleaved water-fat water + fat image. The (c) microcomputed tomography image 
confirmed the marginal bone was intact.

cba
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The ability of IWF to reveal other abnormalities in finger joints was 
also demonstrated in this study. Articular cartilage calcification 
was observed on IWF water + fat images as seen with micro-CT 
[Figure 4a-c]. A bone cyst was better defined on the IWF than on 
micro-CT [Figure 5a-c]. Although the cyst was seen on both the 
IWF water + fat and the micro-CT images, it could not be clearly 
distinguished from the neighboring trabecular structure on the 
micro-CT image. In contrast, IWF provided additional water-only 
images that revealed its water content and confirmed its being a cyst 
instead of fatty marrow inside the trabecular structure [Figure 5c].

DISCUSSION

This study demonstrated the ability of high-resolution IWF 
technique to accurately delineate bone structures in finger joints 
by comparing IWF and regular GRE images of cadaver finger 
specimens with micro-CT that served as the reference standard.

Our results indicate that, with the removal of chemical-shift 
artifacts, high-resolution IWF imaging can improve the depiction 
of bone and calcified structures in finger joints and avoid the false 
appearance of marginal bone defects as observed in the regular 

Figure 4: In this proximal interphalangeal joint, calcification inside the cartilage (circle) was observed on the sagittal (a) interleaved water-fat water + fat 
image as on the (b) microcomputed tomography image.

Table 1: Comparison of coronal interleaved water‑fat and regular 
gradient‑echo sequences in the depiction of apparent marginal bone 
defects.

Scores Number of finger joint structures in each sequence
IWF (water + fat) Regular GRE  

(nonfat‑suppressed)
Distal Proximal Distal Proximal

DIP PIP DIP PIP DIP PIP DIP PIP

0 (best) 8 10 8 10 3 8 8 10
1 0 0 0 0 2 2 0 0
2 0 0 0 0 3 0 0 0
3 0 0 0 0 0 0 0 0
GRE: Gradient echo, DIP: Distal interphalangeal, PIP: Proximal interphalangeal, 
IEF: Interleaved water‑fat

Table 2: Comparison of sagittal interleaved water‑fat and regular 
gradient‑echo sequences in the depiction of apparent marginal bone 
defects.

Scores Number of finger joint structures in each sequence
IWF (water + fat) Regular GRE 

(nonfat‑suppressed)
Distal Proximal Distal Proximal

DIP PIP DIP PIP DIP PIP DIP PIP

0 (best) 5 8 10 10 4 2 10 10
1 4 1 0 0 3 7 0 0
2 1 1 0 0 3 1 0 0
3 0 0 0 0 0 0 0 0
GRE: Gradient echo, DIP: Distal interphalangeal, PIP: Proximal interphalangeal, 
IWF: Interleaved water‑fat

ba

Figure 5: A subchondral defect (circle) was seen in this proximal interphalangeal joint on the sagittal (a) microcomputed tomography and (b) interleaved 
water-fat water + fat images. The (c) interleaved water-fat water-only image revealed its water content and identified it as a cyst.

cba
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GRE images. In addition, IWF also provides water-only images 
that enable water content inside bone structures such as bone cyst 
to be clearly identified and distinguishes them from the fatty bone 
marrow in trabecular structures without the need of any signal 
intensity/density measurements as in CT.

Although utilizing higher receive bandwidth can reduce chemical-
shift artifacts, this approach is not desirable for high-resolution 
imaging due to the associated decrease in signal-to-noise ratio 
(SNR) and the increase in gradient amplitude that limits spatial 
resolution. On the other hand, while pulse sequence techniques 
such as IDEAL [19] can eliminate chemical-shift artifacts, they 
require multiple acquisitions that increase scan time.

In this study, micro-CT was used as the reference standard instead 
of histology since our focus was in bone and calcified structures, 
and CT-based techniques are often considered the gold standard 
for bone evaluation.[14] Besides, micro-CT offers several advantages 
over histology. It can be used to visualize the whole finger joint, 
and its 3D data acquired with resolution in tens of microns can 
be reformatted to match closely with the corresponding MRI in 
any plane. In contrast, histology provides only a limited number 
of cross sections in a given plane, and the FOV may cover only a 
small portion of the joint.[5] Furthermore, micro-CT is noninvasive 
and does not damage or change the joint structures as in histology.

While CT can provide clear depiction of bone structures in finger 
joints, it is less desirable for clinical use due to its ionizing radiation 
and its relatively low image contrast in soft and connective tissues. 
On the other hand, although ultrasound has been used for 
imaging finger joints, it is less sensitive in detecting bone erosions 
compared to MRI. In a study comparing ultrasound with CT of 
finger joints, small erosive lesions of <2 mm were found to cause 
false-negative results in ultrasound, whereas osteophytes mimic 
erosive lesions and led to false-positive results.[20]

A potential limitation of the high-resolution IWF imaging in this 
study is the relatively long scan time of 14.2 min. It results from 
the use of the 3D matrix size of 256 × 256 × 64 and longer TR 
to achieve the high image resolution. For the regular nonfat-
suppressed and fat-suppressed scans, the minimum TR values are 
23 ms and 40 ms, respectively. For the IWF scan, the minimum 
TR is further lengthened to 52 ms to accommodate the separate 
water and fat acquisitions in each TR period (this TR of 52 ms was 
also used in the regular GRE scans in this study to facilitate image 
comparison with the IWF scans). Despite the longer associated 
scan time, the longer TR is actually advantageous in that it provides 
higher signal to support the high-resolution acquisition. We found 
in a separate test that by increasing TR from the minimum value 
of 23 ms to 52 ms in the regular nonfat-suppressed GRE scan, SNR 
in the muscle was increased by about 50%. Furthermore, the IWF 
sequence provides both water + fat and water-only images in a 
single scan, thus saving the time to acquire both the conventional 
nonfat-suppressed and fat-suppressed scans.[18] The minimum 
scan time for the regular nonfat-suppressed and fat-suppressed 
scans is 6.4 min and 11.0 min using the minimum TR of 23 ms and 

40 ms, respectively, resulting in a combined minimum scan time 
of 17.4 min that is longer than the IWF scan of 14.2 min. The scan 
time for IWF may be reduced by using partial echo acquisition, 
though the effect to SNR and image quality will need to be assessed.

Another limitation of the technique used in this study is that each 
finger joint was imaged separately due to the custom single-loop 
RF coil used, and this restricts its potential clinical applications. 
Recently, a new flexible hand coil that provides high signal and full 
coverage for all fingers in a hand has been reported.[21] Dedicated 
hand/fingers phased array coils such as this may enable high-
resolution IWF imaging of multiple fingers.

CONCLUSION

This study has characterized and verified the high-resolution IWF 
imaging findings in the bony and calcified structures of finger joints. 
This technique is able to reveal detailed structural information of 
finger joints that may not be seen with conventional MRI, and its 
elimination of chemical-shift artifacts provides accurate depiction 
of bone structures and avoids the false appearance of erosions. 
Potential applications of the technique include early diagnosis, 
monitoring of disease progression, and evaluation of the effects of 
early treatment of arthritis. This technique should also be useful 
for basic research in the pathophysiology of arthritis, such as early 
disease mechanisms in bone and cartilage, which may lead to 
improved treatment of the disease.
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